skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Du, Yingshan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Leveraging robot-assisted technology to manipulate tiny objects has shown significant potential in the fields of engineering, chemistry, and biology. However, achieving high-resolution, non-invasive manipulation of objects shielded by biological barriers remains a major challenge. In this work, we present a robot-assisted acoustic vortex end effector system capable of generating acoustic vortex beams for contactless manipulation of small objects. First, instead of generating a fixed acoustic vortex beam, our acoustic end effector can tune the chirality of the vortex beam by adjusting the topological charge number encoded in the holographic lens, allowing for customization of the size of the corresponding potential well to accommodate various sizes of trapped particle. Second, by leveraging acoustic vortex beams as a non-invasive manipulator, we successfully achieved acoustic manipulation through biomimetic barriers. In a proof-of-concept experiment, we demonstrated the high-resolution contactless acoustic manipulation of a plastic ball (3 mm diameter) within a straight phantom mimic-vessel. Third, by combining the acoustic vortex end effector with a real time ultrasound imaging system, our approach enables continuous, real-time monitoring of the entire acoustic manipulation process. This integration paves the way for acoustic trapping and manipulation in non-transparent environments. Overall, our research demonstrates the advantages of acoustic manipulation technologies in biomedical and clinical applications, offering a biocompatible solution for medical interventions in the future. 
    more » « less
    Free, publicly-accessible full text available August 17, 2026
  2. Abstract The development of smart materials capable of dynamic shape morphing and rapid responsiveness has garnered significant interest for applications in soft robotics, tissue engineering, programmable materials, and adaptive structures. Hydrogels, owing to their intrinsic biocompatibility and flexibility, are promising candidates for such systems. Embedding micro-scale materials within hydrogel networks can further enhance their mechanical and functional properties. In this study, we present a hybrid fabrication platform that integrates surface acoustic wave (SAW)-based acoustofluidics with digital light processing (DLP) photopolymerization to fabricate smart hydrogel composites with programmable shape-memorable behavior. Using the SAW-induced acoustic potential field, silicon carbide (SiC) micro-whiskers are aligned within a custom UV-curable hydrogel ink and subsequently fixed via high-resolution DLP photopolymerization. This dual-control approach enables independent manipulation of micro-whisker orientation and structural geometry. Numerical simulations and Laser Doppler vibrometry-based validation were employed to characterize the acoustic field. To evaluate shape-memory behavior, the fabricated hydrogels were subjected to dehydration and rehydration cycles. The resulting shape transformations, driven by internal stress gradients within the aligned microparticle framework, enabled humidity-responsive actuation. This work establishes a novel strategy for constructing 4D-printed smart hydrogels, offering a versatile platform for the development of next-generation programmable materials and adaptive structures. 
    more » « less
    Free, publicly-accessible full text available September 8, 2026
  3. Abstract Precise manipulation of nanomaterials has shown great potential in facilitating the fabrication of functional hydrogel nanocomposites in applications such as soft robotics, biomedicine, structural health monitoring, and wearable sensing. Surface acoustic wave (SAW)-based acoustofluidics offers a contactless approach for nanoparticle manipulation. Meanwhile, digital light processing (DLP) has been extensively utilized in the hydrogel printing process due to its high-resolution fabrication capabilities. This study presents an innovative SAW acoustofluidics-assisted DLP system, enabling the patterning of nanoparticles embedded in matrix materials while facilitating programmed light exposure for the controllable photopolymerization of customized hydrogel nanocomposites. Instead of utilizing the acoustic potential field generated by SAWs, we leverage the accompanying electric field due to the piezoelectric effect of the lithium niobate (LiNbO3) substrate to generate electric field, enabling the electric field-driven patterning of multi-walled carbon nanotubes (MWCNTs) Laser Doppler vibrometry confirms the SAW-generated acoustic intensity fields. The analytical simulation together with the scanned data predicted the co-current electric field predicted the distribution of MWCNTs. By applying a programmed light pattern, we successfully fabricated hydrogel nanocomposites in the shape of a VT logo and produced hydrogel nanocomposite sensors. The capabilities of printed hydrogel nanocomposite sensors were demonstrated through beam vibration sensing, proving its potential application in structural health monitoring. The fabricated sensors demonstrated the capability to track finger movements, indicating their potential for wearable sensing applications. In summary, this study offers a unique approach for nanocomposites fabricating multi-material integration and material anisotropy control, thereby facilitating advanced smart material development. Future work will focus on exploring the fabrication of hydrogels containing other types of nanomaterials to enhance material conductivity and achieve other functions, aiming with the goal of developing nanocomposite sensors for applications in soft robotics, biomedicine, structural health monitoring, and wearable sensing. 
    more » « less
    Free, publicly-accessible full text available August 17, 2026
  4. Abstract Cell patterning techniques play a pivotal role in the development of three-dimensional (3D) engineered tissues, holding significant promise in regenerative medicine, drug screening, and disease research. Current techniques encompass various mechanisms, such as nanoscale topographic patterning, mechanical loading, chemical coating, 3D inkjet printing, electromagnetic fields, and acoustic waves. In this study, we introduce a unique standing bulk waves-based acoustic cell patterning device designed for constructing anisotropic-engineered glioma tissues containing acoustically patterned human glioblastoma cell U251. Our device features two orthogonal pairs of piezoelectric transducers securely mounted on a customized holder. The energy of standing bulk waves generated from these transducers can be transmitted into the medium in a Petri dish through its bottom wall. Cells in the medium can be directed to the local minima of Gor’kov potential fields and trapped by the resultant acoustic radiation force. Through proof-of-concept experiments, we validate the functionality of our acoustic patterning device and assess the morphology and differentiation of U251 cells within the engineered glioma tissues. Our findings reveal that cells can be arranged in different distributions, such as parallel-line-like and lattice-like patterns. Moreover, the aligned cells exhibit more obvious elongation along the cell alignment orientation compared to the result of a control group. We anticipate that this study will catalyze the advancement in contactless cell patterning technologies within tissue engineering, facilitating the development of engineered tissues for applications in regenerative medicine and disease research. 
    more » « less
  5. Rizzo, Piervincenzo; Su, Zhongqing; Ricci, Fabrizio; Peters, Kara J (Ed.)
    Anisotropic collagen-based biomaterials have gained significant attention in the fields of tissue engineering and regenerative medicine. They have shown great potential for wound dressing, corneal grafting, and exploring the mechanism of cancer cell invasion. Various external physical field-based methods for the fabrication of anisotropic collagen-based biomaterials have been developed, including electrospinning, microfluidic shearing, mechanical loading, and so on. In this study, we put forward an acoustic streaming-based method that uses acoustic wave-induced fluid streaming to control collagen self-assembly and fiber arrangement. Our acoustic device leverages a piezoelectric transducer to generate traveling acoustic waves in fluids, and the wave-fluid interaction further induces fluid streaming, known as acoustic streaming. If the fluid contains collagen macromolecules, the acoustic streaming is able to affect the collagen self-assembly process to create biomaterials containing directionally arranged collagen fibers along the streaming velocity direction. Therefore, this acoustic streaming-based method allows for manufacturing collagen hydrogel layers that contain acoustically arranged collagen fibers and have controlled anisotropic material properties. We performed a series of proof-of-concept experiments by using a fabricated acoustic device to control the self-assembly process of collagens loaded in a Petri dish. Our results show the effectiveness of arranging collagen fibers that follow the flow direction of acoustic streaming. To better understand the collagen manipulation mechanism, we used particle image velocimetry to characterize the acoustic wave-induced fluid streaming. We expect this study can contribute to the fabrication of collagen-based anisotropic biomaterials for biomedical applications. 
    more » « less
  6. Abstract Characterizing the mechanical properties of viscoelastic materials is critical in biomedical applications such as detecting breast cancer, skin diseases, myocardial diseases, and hepatic fibrosis. Current methods lack the consideration of dispersion curves that depend on material properties and shear wave frequency. This paper presents a novel method that combines noncontact shear wave sensing and dispersion analysis to characterize the mechanical properties of viscoelastic materials. Our shear wave sensing system uses a piezoelectric stack (PZT stack) to generate shear waves and a laser Doppler vibrometer (LDV) integrated with a 3D robotic stage to acquire time-space wavefields. Next, an inverse method is employed for the wavefield analysis. This method leverages multi-dimensional Fourier transform and frequency-wavenumber dispersion curve regression. Through proof-of-concept experiments, our sensing system successfully generated shear waves and acquired its timespace wavefield in a customized viscoelastic phantom. After dispersion curve analysis, we successfully characterized two material properties (shear elasticity and shear viscosity) and measured shear wave velocities at different frequencies. 
    more » « less
  7. Abstract Surface acoustic waves (SAWs) have shown great potential for developing sensors for structural health monitoring (SHM) and lab‐on‐a‐chip (LOC) applications. Existing SAW sensors mainly rely on measuring the frequency shifts of high‐frequency (e.g., >0.1 GHz) resonance peaks. This study presents frequency‐locked wireless multifunctional SAW sensors that enable multiple wireless sensing functions, including strain sensing, temperature measurement, water presence detection, and vibration sensing. These sensors leverage SAW resonators on piezoelectric chips, inductive coupling‐based wireless power transmission, and, particularly, a frequency‐locked wireless sensing mechanism that works at low frequencies (e.g., <0.1 GHz). This mechanism locks the input frequency on the slope of a sensor's reflection spectrum and monitors the reflection signal's amplitude change induced by the changes of sensing parameters. The proof‐of‐concept experiments show that these wireless sensors can operate in a low‐power active mode for on‐demand wireless strain measurement, temperature sensing, and water presence detection. Moreover, these sensors can operate in a power‐free passive mode for vibration sensing, with results that agree well with laser vibrometer measurements. It is anticipated that the designs and mechanisms of the frequency‐locked wireless SAW sensors will inspire researchers to develop future wireless multifunctional sensors for SHM and LOC applications. 
    more » « less
  8. Abstract Acoustofluidics has shown great potential in enabling on‐chip technologies for driving liquid flows and manipulating particles and cells for engineering, chemical, and biomedical applications. To introduce on‐demand liquid sample processing and micro/nano‐object manipulation functions to wearable and embeddable electronics, wireless acoustofluidic chips are highly desired. This paper presents wireless acoustofluidic chips to generate acoustic waves carrying sufficient energy and achieve key acoustofluidic functions, including arranging particles and cells, generating fluid streaming, and enriching in‐droplet particles. To enable these functions, the wireless acoustofluidic chips leverage mechanisms, including inductive coupling‐based wireless power transfer (WPT), frequency multiplexing‐based control of multiple acoustic waves, and the resultant acoustic radiation and drag forces. For validation, the wirelessly generated acoustic waves are measured using laser vibrometry when different materials (e.g., bone, tissue, and hand) are inserted between the WPT transmitter and receiver. Moreover, the wireless acoustofluidic chips successfully arrange nanoparticles into different patterns, align cells into parallel pearl chains, generate streaming, and enrich in‐droplet microparticles. This research is anticipated to facilitate the development of embeddable wireless on‐chip flow generators, wearable sensors with liquid sample processing functions, and implantable devices with flow generation and acoustic stimulation abilities for engineering, veterinary, and biomedical applications. 
    more » « less
  9. Abstract Tweezers based on optical, electric, magnetic, and acoustic fields have shown great potential for contactless object manipulation. However, current tweezers designed for manipulating millimeter‐sized objects such as droplets, particles, and small animals exhibit limitations in translation resolution, range, and path complexity. Here, a novel acoustic vortex tweezers system is introduced, which leverages a unique airborne acoustic vortex end effector integrated with a three‐degree‐of‐freedom (DoF) linear motion stage, for enabling contactless, multi‐mode, programmable manipulation of millimeter‐sized objects. The acoustic vortex end effector utilizes a cascaded circular acoustic array, which is portable and battery‐powered, to generate an acoustic vortex with a ring‐shaped energy pattern. The vortex applies acoustic radiation forces to trap and spin an object at its center, simultaneously protecting this object by repelling other materials away with its high‐energy ring. Moreover, The vortex tweezers system facilitates contactless, multi‐mode, programmable object surfing, as demonstrated in experiments involving trapping, repelling, and spinning particles, translating particles along complex paths, guiding particles around barriers, translating and rotating droplets containing zebrafish larvae, and merging droplets. With these capabilities, It is anticipated that the tweezers system will become a valuable tool for the automated, contactless handling of droplets, particles, and bio‐samples in biomedical and biochemical research. 
    more » « less